
ADAPTIVE SIMULATED ANNEALING (ASA) ©

Lester Ingber

Lester Ingber Research
P.O. Box 857

McLean, VA 22101

ingber@alumni.caltech.edu

Adaptive Simulated Annealing (ASA) Lester Ingber

1. GNU General Public License (GPL)

This Adaptive Simulated Annealing (ASA) code is being made available under a GNU COPYING
“copyleft” license, and is owned by Lester Ingber[1]. Please read the copy of this license contained in
this directory. Its intent is to make this code publicly available to the widest audience while maintaining
the integrity of the basic algorithm.

2. Documentation

2.1. Table of Contents

A Table of Contents of the three levels of headers with their page numbers is located at the end of
this document. This may be placed after the first title page, or left at the end for quick reference.

2.2. readme.ms

The readme.ms file is used to prepare other documentation files using UNIX® MS macros.

2.3. README and README+

README is an ASCII file that can be previewed on your screen or sent to an ASCII lineprinter.

README+ is README without any filters to strip off underlining and bold enhancements. This
is uuencoded to the file README+.uu in order to pass through the shar utility. If you have downloaded
ASA-shar or ASA-shar.Z, to use this file, ‘uudecode README+.uu‘ will leave README+.

2.4. asa.[13nl] Manpage

The README or README+ file can be copied to a file named asa.[l3], and asa.[13] can be
installed as MANPATH/cat1/asa.1 or MANPATH/cat3/asa.3, where MANPATH is the place your man
directory is located. If you do not have any cat[13] directories on your system, then installing a copy of
README or README+ as MANPATH/man[13nl]/asa.[13nl], choosing one of the suffixes in [13nl] for
your choice of directory and asa file name, should work fine on most machines. (However, passing
asa.[13nl] which is the equivalent of README[+] through man may strip out some items like
\"asa_out\".) You likely can avoid some further undesirable formatting by man by placing ’.nf’ on the
first line of this file.

2.5. README.ps

README.ps is a PostScript® formatted file which may be previewed on your screen if you have
the proper software, or it may be sent to a PostScript® printer to produce hardcopy.

2.6. Additional Documentation

CHANGES is a terse record of major changes made in the ASA code. NOTES is a collection of
recommended enhancements, modifications, comments, caveats, etc., that might be of interest.

The file asa_new in ftp.alumni.caltech.edu: /pub/ingber is a list of major changes in ASA since the
last announcement to the ASA_list. This can be used as a quick guide to determine if you should
download the latest ASA code in the archive before the next announcement.

An addendum to NOTES is the file asa_papers in ftp.alumni.caltech.edu: /pub/ingber, listing some
(p)reprints that have used ASA or its precursor VFSR. This separation of information is to minimize
updating versions of the ASA directory due to changes in this section.

It is certain that there is much research to be done on determining optimal or even reasonable ASA
parameters, e.g., the set of Program Options, for different classes of systems, especially in higher
dimensional spaces of user parameters. (In the NOTES file are some comments on how you might use
ASA recursively to determine the optimal set of some Program Options for a given system.) A major
purpose of making this code publicly available is to motivate more of this research, and thus make the
code more useful to a wider audience.

- 1 -

Adaptive Simulated Annealing (ASA) Lester Ingber

2.7. Parallelizing ASA and PATHINT Project (PAPP)

The file /pub/ingber/MISC.DIR/parallel.txt contains an update of the Parallelizing ASA and
PATHINT Project (PAPP). No code will be released until it has passed some reasonable tests and has
reasonable documentation.

2.8. Additional Information

Sorry, I cannot assume the task of mailing out hardcopies of code or papers. My volunteer time
assisting people with their queries on my codes and papers must be limited to electronic mail
correspondence. Commercial consulting appointments can be made by contacting me via e-mail, mail, or
calling 1.800.L.INGBER.

3. Availability of ASA Code

3.1. Caltech

The latest Adaptive Simulated Annealing (ASA) code and some related (p)reprints can be retrieved
via anonymous ftp from ftp.alumni.caltech.edu [131.215.139.234] in the /pub/ingber directory. This
archive also can be accessed via WWW path http://alumni.caltech.edu/˜ingber/ or
ftp://ftp.alumni.caltech.edu/pub/ingber/.

Interactively [brackets signify machine prompts]:
[your_machine%] ftp ftp.alumni.caltech.edu
[Name (...):] anonymous
[Password:] your_e−mail_address
[ftp>] cd pub/ingber
[ftp>] binary
[ftp>] ls
[ftp>] get file_of_interest
[ftp>] quit

The 00index file contains an index of the other files and information on getting gzip and unshar for
DOS®, MAC®, UNIX®, and VMS® systems.

The latest version of ASA, ASA−x.y (x and y are version numbers), can be obtained in several
formats. ASA−shar.Z is a compress’d shar’d file of the current code. For the convenience of users who
do not have any uncompress/gunzip utility, there is a file ASA−shar which is an uncompress’d copy of
ASA−shar.Z; if you do not have sh or shar, you still can delete the first−column X’s and separate the files
at the END_OF_FILE locations. There are tar’d versions in compress and gzip format, ASA.tar.Z and
ASA.tar.gz, respectively. There also is a current zip’d version, ASA.zip, in which all files have been
processed through unix2dos. Directory /pub/ingber/0lower.dir contains links to these files for some PC
users who may have difficulty with upper case.

Patches ASA−diff−x1.y1−x2.y2.Z up to the present version can be prepared, if a good case for
doing so is presented. These may be concatenated as required before applying. If you require a specific
patch that is not contained in the archive, contact ingber@alumni.caltech.edu.

3.2. Electronic Mail

If you do not have ftp access, get information on the FTPmail service by: mail
ftpmail@decwrl.dec.com, and send only the word “help” as the body of the message. You will receive
the information in /pub/ingber/UTILS.DIR/ftpmail.txt. Similarly, from a BITNET site, send the word
“help” as the body of a message to bitftp@pucc (bitftp@pucc.bitnet if from an Internet site).

If any of the above are not possible, and if your mailer can handle large files (please test this first),
the code or papers you require can be sent as uuencode’d compress’d files via electronic mail. If you have
gzip, resulting in smaller files, please state this.

- 2 -

Adaptive Simulated Annealing (ASA) Lester Ingber

3.3. ASA Mailing List

If you wish to be placed on the electronic mailing ASA_list to receive major updates between
public announcements of new versions, please send e−mail stating this request to
asa−request@alumni.caltech.edu. Update notices are sent to the ASA_list about every month or two,
more frequently if warranted, e.g., in cases of important bug fixes; these notices are the only e−mail sent
to the ASA_list. This is highly recommended if you plan to use ASA on complex systems, as there is
ongoing research using and testing ASA by many users. To unsubscribe from this list, simply send an
electronic mail with this request to asa−request@alumni.caltech.edu.

4. Background

4.1. Context

The ASA code was first developed in 1987 as Very Fast Simulated Reannealing (VFSR) to deal
with the necessity of performing adaptive global optimization on multivariate nonlinear stochastic
systems[2]. VFSR was recoded and applied to several complex systems, in combat analysis[3],
finance[4], and neuroscience[5]. The first applications to combat analysis used code written in RATFOR
and converted into FORTRAN. Other applications since then have used new code written in C. (The
NOTES file contains some comments on interfacing ASA with FORTRAN codes.) A paper has indicated
how this technique can be enhanced by combining it with some other powerful algorithms, e.g., to
produce an algorithm for parallel computation[6]. In November 1992, the VFSR C-code was rewritten,
e.g., changing to the use of long descriptive names, and made publicly available as version 6.35 under the
same GNU license as this ASA code[7].

Beginning in January 93, many adaptive features were developed, largely in response to users’
requests, leading to this ASA code. ASA has been examined in the context of a review of methods of
simulated annealing using annealing versus quenching (faster temperature schedules than permitted by
basic heuristic proof of ergodicity)[8]. ASA is now used world-wide across many disciplines[9].

4.2. Outline of ASA Algorithm

Details of the ASA algorithm are best obtained from the published papers. There are three parts to
its basic structure.

4.2.1. Generating Probability Density Function

In a D-dimensional parameter space with parameters pi having ranges [Ai , Bi], about the k’th last
saved point (e.g, a local optima), pi

k , a new point is generated using a distribution defined by the product
of distributions for each parameter, gi(yi; Ti) in terms of random variables yi ∈ [−1, 1], where pi

k+1 =
pi

k + yi(Bi − Ai), and “temperatures” Ti ,

gi(yi; Ti) =
1

2(|yi | + Ti) ln(1 + 1/Ti)
.

4.2.2. Acceptance Probability Density Function

The cost functions, C(pk+1) − C(pk), are compared using a uniform random generator, U ∈ [0, 1), in
a “Boltzmann” test: If

exp[−((C(pk+1) − C(pk)))/Tcost] > U ,

where Tcost is the “temperature” used for this test, then the new point is accepted as the new sav ed point
for the next iteration. Otherwise, the last saved point is retained.

4.2.3. Reannealing Temperature Schedule

The annealing schedule for each parameter temperature, Ti from a starting temperature Ti0, is

Ti(ki) = T0i exp(−ci k
1/D
i) .

- 3 -

Adaptive Simulated Annealing (ASA) Lester Ingber

This is discussed further below.

The annealing schedule for the cost temperature is developed similarly to the parameter
temperatures. However, the index for reannealing the cost function, kcost, is determined by the number of
accepted points, instead of the number of generated points as used for the parameters. This choice was
made because the Boltzmann acceptance criteria uses an exponential distribution which is not as fat-tailed
as the ASA distribution used for the parameters. This schedule can be modified using several OPTIONS.
In particular, the Pre-Compile DEFINE_OPTIONS USER_COST_SCHEDULE permits quite arbitrary
functional modifications for this annealing schedule.

As determined by the Program Options selected, the parameter “temperatures” may be periodically
adaptively reannealed, or increased relative to their previous values, using their relative first derivatives
with respect to the cost function, to guide the search “fairly” among the parameters.

4.3. Efficiency Versus Necessity

ASA is not necessarily an “efficient” code. For example, if you know that your cost function to be
optimized is something close to a parabola, then a simple gradient Newton search method most likely
would be faster than ASA. ASA is believed to be faster and more robust than other simulated annealing
techniques for most complex problems with multiple local optima; again, be careful to note that some
problems are best treated by other algorithms. If you do not know much about the structure of your
system, and especially if it has complex constraints, and you need to search for a global optimum, then
this ASA code is heartily recommended to you.

5. Outline of Use

Set up the ASA interface: Your program should be divided into two basic modules. (1) The user
calling procedure, containing the cost function to be minimized (or its negative if you require a global
maximum), here is contained in user.c and user.h. (2) The ASA optimization procedure, here is contained
in asa.c and asa.h. The file asa_user.h contains definitions and macros common to both asa.h and user.h.
Furthermore, there are some options to explore/read below. It is assumed there will be no confusion over
the standard uses of the term “parameter” in different contexts, e.g., as an element passed by a subroutine
or as a physical coefficient in a cost function.

ASA has been run successfully on many machines under many compilers. To check out your own
system, you can run ‘make‘ (or the equivalent set of commands in the Makefile), and compare your
asa_out and user_out files to the test_asa and test_usr files, respectively, provided with this code. (For
these runs, TIME_CALC=TRUE, discussed below, was added to the compilation options.) No attempt
was made to optimize any compiler, so that the test runs do not really signify any testing of compilers or
architectures; rather they are meant to be used as a guide to determine what you might expect on your
own machine.

The major sections below describe the compilation procedures, the Program Options available to
you to control the code, the use of templates to set up your user module and interface to the asa module,
and how to submit bug reports.

If you already have your own cost function defined, as a quick guide to get started, you can search
through user.c for all occurrences of “MY_COST” to insert the necessary definitions required to run ASA.

6. Makefile/Compilation Procedures

The PostScript® README.ps and ASCII README and README+ files were generated using
‘make doc’. The Makefile describes some options for formatting these files differently. Use ‘make’ or
‘make all’ to compile and run asa_run, the executable prepared for the test function. Examine the
Makefile to determine the “clean” options available.

Since complex problems by their nature are often quite unique, it is unlikely that the default
parameters are just right for your problem. However, experience has shown that if you a priori do not
have any reason to determine your own parameters, then you might do just fine using these defaults, and
these are recommended as a first-order guess. These defaults can be changed simply by adding to the
DEFINE_OPTIONS line in the Makefile, by passing options on your command line, and by changing

- 4 -

Adaptive Simulated Annealing (ASA) Lester Ingber

structure elements in the user or asa module as described below. Depending on how you integrate ASA
into your own user modules, you may wish to modify this Makefile or at least use some of these options
in your own compilation procedures.

Note that the Makefile is just a convenience, not a necessity, to use ASA. E.g., on systems which
do not support this utility, you may simply compile the files following the guidelines in the Makefile,
taking care to pass the correct DEFINE_OPTIONS to your compilation commands at your shell prompt.
Still another way, albeit not as convenient, is to make the desired changes in the asa_user.h, and asa.h or
user.h files as required.

Since the Makefile contains comments giving short descriptions of some options, it should be
considered as an extension of this documentation file. For convenience, most of this information is
repeated below. Howev er, to see how they can be used in compilations, please read through the Makefile.

For example, to run the ASA test problem using the gcc compiler, you could just type at your “%”
prompt:

% gcc -g -DASA_TEST=TRUE -o asa_run user.c asa.c -lm
% asa_run

You may have to feed different options to your own compiler. The resulting asa_out file should only
differ from the test_asa file by having different values for the OPTIONS_FILE and TIME_CALC lines,
and by not having a few lines marking the CPU time.

If you have defined your own cost function within the “MY_COST” guides in user.c, then
ASA_TEST should be set to FALSE (the default if ASA_TEST is not defined in your compilation lines or
in the Makefile). The code for ASA_TEST=TRUE is given just above these guides as a template to use
for your own cost function.

7. User Options

The DEFINE_OPTIONS are organized into two groups: Pre-Compile Options and (Pre-Compile)
Printing Options. In addition, there are some alternatives to explore under Compiler Choices and
Document Formatting. Below are the DEFINE_OPTIONS with their defaults. The Program Options are
further discussed in other sections in this document.

7.1. Pre-Compile DEFINE_OPTIONS

7.1.1. OPTIONS_FILE=TRUE

You can elect to read in the Program Options from asa_opt by setting OPTIONS_FILE=TRUE.
OPTIONS_FILE=TRUE can be set in the Makefile in compilation commands or in asa_user.h.

7.1.2. ASA_LIB=FALSE

Setting ASA_LIB=TRUE will facilitate your running asa() as a library call from another program,
calling asa_main() in user.c. In the templates provided, all initializations and cost function definitions are
set up in user.c. For example, you may wish to have some data read in to a module that calls asa_main(),
then parses out this information to the arrays in asa_main() and initialize_parameters (and possibly
recur_initialize_parameters). In conjunction with setting printout to stdout (see ASA_OUT and
USER_ASA_OUT), this can be a convenient way of using the same asa_run executable for many runs.

7.1.3. HAVE_ANSI=TRUE

Setting HAVE_ANSI=FALSE will permit you to use an older K&R C compiler. This option can be
used if you do not have an ANSI compiler, overriding the default HAVE_ANSI=TRUE. If you use
HAVE_ANSI=FALSE, change CC and CDEBUGFLAGS as described in the Makefile.

7.1.4. IO_PROT OTYPES=TRUE

Some machines do not like any other I/O prototyping other than those in their own include files,
e.g., like one Convex-120 that was tested. Other machines, like a Dec-3100 under Ultrix complained that

- 5 -

Adaptive Simulated Annealing (ASA) Lester Ingber

the ANSI I/O prototypes were inconsistent. A Sun under gcc gav e warnings if no I/O prototypes were
present. Therefore, the defaults in asa_user.h use K&R system prototypes even for the ANSI compiler,
for fprintf, fflush, fclose, and exit, and for fscanf in user.h. Setting IO_PROT OTYPES=FALSE will
comment out even these declarations. This also has worked on an Indigo and on a Cray C90/UNICOS
8.0.

7.1.5. TIME_CALC=FALSE

Some systems do not have the time include files used here; others have different scales for time.
Setting TIME_CALC=TRUE will permit use of the time routines. In the NOTES are some contributed
code that should be useful for some particular systems.

7.1.6. TIME_STD=FALSE

Some systems, e.g., hpux, use other Unix-standard macros to access time. Setting
TIME_STD=TRUE when using TIME_CALC=TRUE will use these time routines instead.

7.1.7. INT_LONG=TRUE

Some smaller systems choke on ‘long int’ and this option can be set to INT_LONG=FALSE to turn
off warnings and possibly some errors. The cast LONG_INT is used to define ‘int’ or ‘long int’
appropriately.

7.1.8. INT_ALLOC=FALSE

The cast on *number_parameters is set to ALLOC_INT which defaults to LONG_INT. On some
machines, ALLOC_INT might have to be set to int if there is a strict requirement to use an (unsigned) int
for calloc, while ‘long int’ still can be used for other aspects of ASA. If ALLOC_INT is to be set to int,
set INT_ALLOC to TRUE.

7.1.9. SMALL_FLOAT=1.0E-18

SMALL_FLOAT is a measure of accuracy permitted in log and divide operations in asa, i.e., which
is not precisely equivalent to a given machine’s precision. There also are Pre-Compile
DEFINE_OPTIONS to separately set constants for minimum and maximum doubles and precision
permitted by your machine. Experts who require the very best precision can fine-tune these parameters in
the code.

Such issues arise because the fat tail of ASA, associated with high parameter temperatures, is very
important for searching the breadth of the ranges especially in the initial stages of search. However, the
parameter temperatures require small values at the final stages of the search to converge to the best
solution, albeit this is reached very quickly given the exponential schedule proven in the referenced
publications to be permissible with ASA. Note that the test problem in user.c is a particularly nasty one,
with 1E20 local minima and requiring ASA to search over 12 orders of magnitude of the cost function
before correctly finding the global minimum. Thus, intermediate values disagree somewhat for
SMALL_FLOAT=1.0E-12 from the settings using SMALL_FLOAT=1.0E-18 (the default); they agree if
SMALL_FLOAT=1.0E-12 while also setting MIN_DOUBLE=1.0E-18. The results diverge when the
parameter temperatures get down to the range of E-12, limiting the accuracy of the
SMALL_FLOAT=1.0E-12 run.

7.1.10. MIN_DOUBLE=SMALL_FLOAT

You can define your own machine’s minimum positive double here if you know it.

7.1.11. MAX_DOUBLE=1.0/SMALL_FLOAT

You can define your own machine’s maximum double here if you know it.

- 6 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.1.12. EPS_DOUBLE=SMALL_FLOAT

You can define your own machine’s maximum precision here if you know it.

7.1.13. NO_PARAM_TEMP_TEST=FALSE

If NO_PARAM_TEMP_TEST is set to TRUE, then all parameter temperatures less than
EPS_DOUBLE are set to EPS_DOUBLE, and no exit is called.

7.1.14. NO_COST_TEMP_TEST=FALSE

If NO_COST_TEMP_TEST is set to TRUE, then a cost temperature less than EPS_DOUBLE is set
to EPS_DOUBLE, and no exit is called.

7.1.15. SELF_OPTIMIZE=FALSE

The user module contains a template to illustrate how ASA may be used to self-optimize its
Program Options. This can be very CPU-expensive and is of course dependent on how you define your
recursive cost function (recur_cost_function in the user module). The example given returns from
recur_cost_function the number of function evaluations taken to optimization the test cost_function, with
the constraint to only accept optimizations of the cost_function that are lower than a specified value. A
few lines of code can be uncommented in user.c to force a fast exit for this demo; search for FAST EXIT.
This example uses OPTIONS_FILE=FALSE (the default) in the Pre-Compile Options; note that
OPTIONS_FILE=TRUE here would set Program Options from asa_opt for the top level program, not for
the Program Options for the cost_function().

This can be useful when approaching a new system, and it is suspected that the default ASA
Program Options are not at all efficient for this system. It is suggested that a trimmed cost function or
data set be used to get a reasonable guess for a good set of Program Options. ASA has demonstrated that
it typically is quite robust under a given set of Program Options, so it might not make too much sense to
spend lots of resources performing additional fine tuning of the these options. Also, it is possible you
might crash the code by permitting ranges of Program Options that cause your particular cost_function to
return garbage to asa().

7.1.16. ASA_TEST=FALSE

Setting ASA_TEST to TRUE will permit running the ASA test problem. This has been added to
the DEFINE_OPTIONS in the Makefile so that just running make will run the test problem for the new
user.

Searching user.c for “MY_COST” provides a guide to the user for additional code to add for his/her
own system. Just above each occurrence of these guides is the corresponding code for
ASA_TEST=TRUE. Keeping the default of ASA_TEST set to FALSE permits such changes without
overwriting the test example.

7.1.17. ASA_TEMPLATE=FALSE

There are several templates that come with the ASA code, used to test several OPTIONS. To
permit use of these OPTIONS without having to delete these extra tests, these templates are wrapped with
ASA_TEMPLATE. To use tests associated with these OPTIONS, which can be determined by reading
the code, just set ASA_TEMPLATE to TRUE in the Makefile or in your compilation procedures.

Note that running the ASA test problem in user.c is not affected by ASA_TEMPLATE. To use your
own cost function, you must at least rewrite relevant portions of cost_function() and
initialize_parameters() in user.c.

7.1.18. OPTIONAL_DAT A=FALSE

It can be useful to return additional information to the user module from the asa module. When
OPTIONAL_DAT A is set to true, an additional Program Option pointer, *asa_data, is available in
USER_DEFINES *OPTIONS to gather such data.

- 7 -

Adaptive Simulated Annealing (ASA) Lester Ingber

In one ASA_TEMPLATE provided (see the set of DEFINE_OPTIONS used in the Makefile),
OPTIONAL_DAT A is used together with SELF_OPTIMIZE to find the set of ASA parameters giving the
(statistically) smallest number of generated points to solve the ASA test problem, assuming this were run
several times with different random seeds for randflt in user.c (e.g., changing “seed” in myrand). Here,
asa_data[0] is used as a flag to print out asa_data[1] in user.c, set to *best_number_generated_saved in
asa.c.

7.1.19. USER_COST_SCHEDULE=FALSE

The function used to control the cost_function temperature schedule is of the form test_temperature
in asa.c. If the user sets the Pre-Compile DEFINE_OPTIONS USER_COST_SCHEDULE to TRUE,
then this function of test_temperature can be controlled, adaptively if desired, in user.c in cost_schedule()
(and in recur_cost_schedule() if SELF_OPTIMIZE is TRUE) by setting USER_COST_SCHEDULE to
TRUE. The names of these functions are set to the relevant pointer in user.c, and can be changed if
desired, i.e.,

USER_OPTIONS->cost_schedule = user_cost_schedule;
RECUR_USER_OPTIONS->cost_schedule = recur_user_cost_schedule;

7.1.20. USER_REANNEAL_FUNCTION=FALSE

In asa.h, the macro
#define \

REANNEAL_FUNCTION(temperature, tangent, max_tangent) \
(temperature * (max_tangent / tangent))

is used to determine the new temperature, subject to further tests in reanneal(). This is the default if
USER_REANNEAL_FUNCTION is FALSE.

If the user sets the Pre-Compile DEFINE_OPTIONS USER_REANNEAL_FUNCTION to TRUE,
then the function controlling the new reannealed temperature can be controlled, adaptively if desired
using USER_OPTIONS, in user.c in user_reanneal(), and in recur_user_reanneal() if SELF_OPTIMIZE
is TRUE. The names of these functions are set to the relevant pointer in user.c, and can be changed if
desired, i.e.,

USER_OPTIONS->reanneal_function = user_reanneal;
RECUR_USER_OPTIONS->reanneal_function = recur_user_reanneal;

7.1.21. ASA_SAMPLE=FALSE

When ASA_SAMPLE is set to TRUE, data is collected by ASA during its global optimization
process to importance-sample the user’s variables. Five OPTIONS become available to monitor the
sampling: n_accepted, bias_acceptance, *bias_generated, average_weights, and limit_weights.

If average_weights exceeds the user’s choice of limit_weights, then the ASA_OUT file will contain
additional detailed information, including temperatures and biases for each current parameter. To
facilitate extracting importance-sampled information from the file printed out by the asa module, all
relevant lines start with :SAMPLE[|:|#|+].

Many Monte Carlo sampling techniques require the user to guess an appropriately decreasing
“window” to sample the variable space. The fat tail of the ASA generating function, and the decreasing
effective range of newly accepted points driven by exponentially decreasing temperature schedules,
removes this arbitrary aspect of such sampling.

However, note that, albeit local optima are sampled, the efficiency of ASA optimization most often
leads to poor sampling in regions whose cost function is far from the optimal point; many such points
may be important contributions to algorithms like integrals. Accordingly, ASA_SAMPLE likely is best
used to explore new regions and new systems.

To increase the sampling rate and thereby to possibly increase the accuracy of this algorithm, use
one or a combination of the various OPTIONS available for slowing down the annealing performed by
ASA.

- 8 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.1.22. ASA_PARALLEL=FALSE

When ASA_PARALLEL is set to TRUE, parallel blocks of generated states are calculated of
number equal to the minimum of OPTIONS->gener_block and OPTIONS->gener_block_max. For most
systems with complex nonlinear cost functions that require the fat tail of the ASA distribution, leading to
high generated to acceptance ratios, this is the most CPU intensive part of ASA that can benefit from
parallelization.

The actual number calculated is determined by a moving average, determined by
OPTIONS->gener_mov_avr, of the previous numbers of OPTIONS->gener_block of generated states
required to find a new best accepted state. If and when OPTIONS->gener_mov_avr is set to 0, then
OPTIONS->gener_block is not changed thereafter.

7.2. Printing DEFINE_OPTIONS

7.2.1. ASA_PRINT=TRUE

Setting this to FALSE will suppress all printing within asa.

7.2.2. ASA_OUT=\"asa_out\"

The name of the output file containing all printing from asa. If you wish to attach a process number
use ASA_OUT=\"asa_out_$$\". (Use ASA_OUT=\"asa_out_$$$$\" if this is set in the Makefile.) If
ASA_OUT=\"STDOUT\" then ASA will print to stdout.

7.2.3. USER_ASA_OUT=FALSE

When USER_ASA_OUT is set to TRUE, an additional Program Option pointer, *asa_out_file, is
used to dynamically set the name(s) of the file(s) printed out by the asa module. (This overrides any
ASA_OUT settings.) In user.c, if USER_OPTIONS->asa_out_file = "STDOUT";, then ASA will print to
stdout.

In one ASA_TEMPLATE provided (see the set of DEFINE_OPTIONS used in the Makefile),
USER_ASA_OUT is used to generate multiple files of separate ASA runs. (If
USER_OPTIONS->QUENCH_PARAMETERS and/or USER_OPTIONS->QUENCH_COST is set to
TRUE in user.c, then this ASA_TEMPLATE will separate runs with different quenching values.)

7.2.4. ASA_PRINT_INTERMED=TRUE

This option is only effective if ASA_PRINT is TRUE. Setting ASA_PRINT_INTERMED to
FALSE will suppress much intermediate printing within asa, especially arrays which can be large when
the number of parameters is large. Printing at intermediate stages of testing/reannealing has been turned
off when SELF_OPTIMIZE is set to TRUE, since there likely can be quite a bit of data generated; this
can be changed by explicitly setting ASA_PRINT_INTERMED to TRUE in the Makefile or on your
compilation command lines.

7.2.5. ASA_PRINT_MORE=FALSE

Setting ASA_PRINT_MORE to TRUE will print out more intermediate information, e.g., new
parameters whenever a new minimum is reported. As is the case whenever tangents are not calculated by
choosing some ASA options, normally the intermediate values of tangents will not be up to date.

- 9 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3. Program OPTIONS
typedef struct {

LONG_INT LIMIT_ACCEPTANCES;
LONG_INT LIMIT_GENERATED;
int LIMIT_INVALID_GENERATED_STATES;
double ACCEPTED_TO_GENERATED_RATIO;

double COST_PRECISION;
int MAXIMUM_COST_REPEAT;
int NUMBER_COST_SAMPLES;
double TEMPERATURE_RATIO_SCALE;
double COST_PARAMETER_SCALE;
double TEMPERATURE_ANNEAL_SCALE;
int USER_INITIAL_COST_TEMP;
double *user_cost_temperature;

int INCLUDE_INTEGER_PARAMETERS;
int USER_INITIAL_PARAMETERS;
ALLOC_INT SEQUENTIAL_PARAMETERS;
double INITIAL_PARAMETER_TEMPERATURE;
int RATIO_TEMPERATURE_SCALES;
double *user_temperature_ratio;
int USER_INITIAL_PARAMETERS_TEMPS;
double *user_parameter_temperature;

int TESTING_FREQUENCY_MODULUS;
int ACTIVATE_REANNEAL;
double REANNEAL_RESCALE;
LONG_INT MAXIMUM_REANNEAL_INDEX;

double DELTA_X;
int DELTA_PARAMETERS;
double *user_delta_parameter;
int USER_TANGENTS;
int CURVA TURE_0;

int QUENCH_PARAMETERS;
double *user_quench_param_scale;
int QUENCH_COST;
double *user_quench_cost_scale;

#if OPTIONAL_DAT A
double *asa_data;

#endif
#if USER_ASA_OUT

char *asa_out_file;
#endif
#if USER_COST_SCHEDULE

double (*cost_schedule) ();
#endif
#if USER_REANNEAL_FUNCTION

double (*reanneal_function) ();
#endif
#if ASA_SAMPLE

- 10 -

Adaptive Simulated Annealing (ASA) Lester Ingber

int n_accepted;
double bias_acceptance;
double *bias_generated;
double average_weights;
double limit_weights;

#endif
#if ASA_PARALLEL

int gener_mov_avr;
LONG_INT gener_block;
LONG_INT gener_block_max;

#endif
}

USER_DEFINES;

Note that two ways are maintained for passing the Program Options. Check the comments in the
NOTES file. It may be necessary to change some of the options for some systems. Read the NOTES file
for some ongoing discussions and suggestions on how to try to optimally set these options. Note the
distinction between trying to speed up annealing/quenching versus trying to slow down annealing (which
sometimes can speed up the search by avoiding spending too much time in some local optimal regions).
Templates are set up in ASA to accommodate all alternatives. Below, the defaults are given in square
brackets [].

(A) user module.
When using ASA as part of a large library, it likely is easiest to make these changes within the user
module, e.g., using the template placed in user.c. The Program Options are stored in the structure
USER_DEFINES *OPTIONS (named USER_DEFINES *USER_OPTIONS in the user module).

(B) asa module.
It likely is most efficient to use a separate data file in the asa module, avoiding repeated
compilations of the code, to test various combinations of Program Options, e.g., using the file
asa_opt when OPTIONS_FILE=TRUE in the Makefile or on your compilation command lines.

7.3.1. OPTIONS->LIMIT_ACCEPTANCES[10000]

The maximum number of states accepted before quitting. All the templates in ASA have been set
to use LIMIT_ACCEPTANCES=1000 to illustrate the way these options can be changed. If
LIMIT_ACCEPTANCES is set to 0, then no limit is observed. This can be useful for some systems that
cannot handle large integers. (To exit at a specific number of generated points, see the discussion at
LIMIT_INVALID_GENERATED_STATES below.)

7.3.2. OPTIONS->LIMIT_GENERATED[99999]

The maximum number of states generated before quitting. If LIMIT_GENERATED is set to 0,
then no limit is observed. This can be useful for some systems that cannot handle large integers. (To exit
at a specific number of generated points, see the discussion at LIMIT_INVALID_GENERATED_STATES
below.)

7.3.3. OPTIONS->LIMIT_INVALID_GENERATED_STATES[1000]

This sets limits of repetitive inv alid generated states, e.g., when using this method to include
constraints. This also can be useful to quickly exit asa() if this is requested by your cost function: Setting
the value of LIMIT_INVALID_GENERATED_STATES to 0 will exit at the next calculation of the cost
function (possibly after a few more exiting calls to calculate tangents and curvatures). For example, to
exit asa() at a specific number of generated points, set up a counter in your cost function, e.g., similar to
the one in the test function in user.c. For all calls >= the limit of the number of calls to the cost function,
terminate by setting USER_OPTIONS->LIMIT_INVALID_GENERATED_STATES = 0 and setting
*cost_exit = FALSE. (Note that the number of calls counted will include those calls used to set up some
initializations.)

- 11 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3.4. OPTIONS->ACCEPTED_TO_GENERATED_RATIO[1.0E-6]

The least ratio of accepted to generated states. If this value is encountered, then the usual tests,
including possible reannealing, are initiated even if the timing does not coincide with the set
TESTING_FREQUENCY_MODULUS (defined below). All the templates in ASA have been set to use
ACCEPTED_TO_GENERATED_RATIO=1.0E-4 to illustrate the way these options can be changed.

7.3.5. OPTIONS->COST_PRECISION[1.0E-18]

This sets the precision required of the cost function if exiting because of reaching
MAXIMUM_COST_REPEAT.

7.3.6. OPTIONS->MAXIMUM_COST_REPEAT[5]

The maximum number of times that the cost function repeats itself before quitting.

7.3.7. OPTIONS->NUMBER_COST_SAMPLES[5]

The number of cost function values sampled to determine the initial cost function temperature.

7.3.8. OPTIONS->TEMPERATURE_RATIO_SCALE[1.0E-5]

This scale is a guide to the expected cost temperature of convergence within a small range of the
global minimum. As explained in the ASA papers, and as outlined in the NOTES, this is used to set the
rates of annealing. Here is a brief description in terms of the temperature schedule outlined above.

As a useful physical guide, the temperature is further parameterized in terms of quantities mi and
ni , derived from an “expected” final temperature (which is not enforced in ASA), T fi ,

T fi = T0i exp(−mi) when k fi = exp ni ,

ci = mi exp(−ni/D) .

However, note that since the initial temperatures and generating indices, T0i and ki , are independently
scaled for each parameter, it usually is reasonable to simply take { ci , mi , ni} to be independent of the
index i, i.e., to be { c, m, n} for all i.

In asa.c,

m = − log(TEMPERATURE_RATIO_SCALE) .

This can be overridden if RATIO_TEMPERATURE_SCALES (further discussed below) is set to TRUE,
and then values of multipliers of − log(TEMPERATURE_RATIO_SCALE) are used in asa.c. These
multipliers are calculated in the user module as USER_OPTIONS->user_temperature_ratio[] (and passed
to OPTIONS->user_temperature_ratio[] in the asa module). Then,

mi = m OPTIONS− > user_temperature_ratio[i] .

For large numbers of parameters, TEMPERATURE_RATIO_SCALE is a very influential Program
Option in determining the scale of parameter annealing. It likely would be best to start with a larger value
than the default, to slow down the annealing.

7.3.9. OPTIONS->COST_PARAMETER_SCALE[1.0]

This is the ratio of cost:parameter temperature annealing scales. As explained in the ASA papers,
and as outlined in the NOTES, this is used to set the rates of annealing.

In terms of the algebraic development given above for the TEMPERATURE_RATIO_SCALE, in
asa.c,

ccost = c COST_PARAMETER_SCALE .

COST_PARAMETER_SCALE is a very influential Program Option in determining the scale of
annealing of the cost function.

- 12 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3.10. OPTIONS->TEMPERATURE_ANNEAL_SCALE[100.0]

This scale is a guide to achieve the expected cost temperature sought by
TEMPERATURE_RATIO_SCALE within the limits expected by LIMIT_ACCEPTANCES. As
explained in the ASA papers, and as outlined in the NOTES, this is used to set the rates of annealing.

In terms of the algebraic development given above for the TEMPERATURE_RATIO_SCALE, in
asa.c,

n = log(TEMPERATURE_ANNEAL_SCALE) .

For large numbers of parameters, TEMPERATURE_ANNEAL_SCALE probably should at least
initially be set to values greater than *number_parameters, although it will not be as influential as
TEMPERATURE_RATIO_SCALE.

7.3.11. OPTIONS->USER_INITIAL_COST_TEMP[FALSE]

Setting USER_INITIAL_COST_TEMP to TRUE permits you to specify the initial cost
temperature. This can be useful in problems where you want to start the search at a specific scale.

7.3.12. OPTIONS->user_cost_temperature

If USER_INITIAL_COST_TEMP is TRUE, a pointer, OPTIONS->user_cost_temperature, is used
to adaptively initialize parameters temperatures. If this choice is elected, then user_cost_temperature[]
must be initialized (named USER_OPTIONS->user_cost_temperature[] in the user module). (If
USER_INITIAL_COST_TEMP is FALSE, then the pointer *user_cost_temperature must be included in
*OPTIONS, but it need not be initialized.)

7.3.13. OPTIONS->INCLUDE_INTEGER_PARAMETERS[FALSE]

Include integer parameters in derivative and reannealing calculations. This is useful when the
parameters can be analytically continued between their integer values, or if you set the parameter
increments to integral values by setting the DELTA_PARAMETERS option to TRUE, as discussed further
below.

7.3.14. OPTIONS->USER_INITIAL_PARAMETERS[FALSE]

ASA always requests that the user guess initial values of starting parameters, since that guess is as
good as any random guess the code might make. The default is to use the ASA distribution about this
point to generate an initial state of parameters and value of the cost function that satisfy the user’s
constraints. If USER_INITIAL_PARAMETERS is set to TRUE, then the first user’s guess is used to
calculate this first state.

7.3.15. OPTIONS->SEQUENTIAL_PARAMETERS[-1]

The ASA default for generating new points in parameter space is to find a new point in the full
space, rather than to sample the space one parameter at a time as do most other algorithms. This is in
accord with the general philosophy of sampling the space without any prior knowledge of ordering of the
parameters. However, if you have reason to believe that at some stage(s) of search there might be some
benefit to sampling the parameters sequentially, then set SEQUENTIAL_PARAMETERS to the
parameter number you wish to start your annealing cycle, i.e., ranging from 0 to (*parameter_dimension -
1). Then, ASA will cycle through your parameters in the order you have placed them in all arrays
defining their properties, keeping track of which parameter is actively being modified in
OPTIONS->SEQUENTIAL_PARAMETERS, thereby permitting adaptive changes. Any neg ative value
for SEQUENTIAL_PARAMETERS will use the default ASA algorithm. Upon exiting asa(),
SEQUENTIAL_PARAMETERS is reset back to its initial value.

7.3.16. OPTIONS->INITIAL_PARAMETER_TEMPERATURE[1.0]

The initial temperature for all parameters. This is overridden by use of the
USER_INITIAL_PARAMETERS_TEMPS option.

- 13 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3.17. OPTIONS->RATIO_TEMPERATURE_SCALES[FALSE]

Different rates of parameter annealing can be set with RATIO_TEMPERATURE_SCALES set to
TRUE. This requires initializing an array in the user module as discussed below.

7.3.18. OPTIONS->user_temperature_ratio

If RATIO_TEMPERATURE_SCALES is TRUE, a pointer, OPTIONS->user_temperature_ratio, is
used to adaptively set ratios of scales used to anneal the parameters in the cost function. This can be
useful when some parameters are not being reannealed, or when setting the initial temperatures (using
USER_INITIAL_PARAMETERS_TEMPS set to TRUE) is not sufficient to handle all your parameters
properly. This typically is not encountered, so it is advised to look elsewhere at first to improve your
search. If this choice is elected, then user_temperature_ratio[] must be initialized (named
USER_OPTIONS->user_temperature_ratio[] in the user module). (If
RATIO_TEMPERATURE_SCALES is FALSE, then the pointer *user_temperature_ratio must be
included in *OPTIONS, but it need not be initialized.)

7.3.19. OPTIONS->USER_INITIAL_PARAMETERS_TEMPS[FALSE]

Setting USER_INITIAL_PARAMETERS_TEMPS to TRUE permits you to specify the initial
parameter temperatures. This can be useful in constrained problems, where greater efficiency can be
achieved in focussing the search than might be permitted just by setting upper and lower bounds.

7.3.20. OPTIONS->user_parameter_temperature

If USER_INITIAL_PARAMETERS_TEMPS is TRUE, a pointer,
OPTIONS->user_parameter_temperature, is used to adaptively initialize parameters temperatures. If this
choice is elected, then user_parameter_temperature[] must be initialized (named
USER_OPTIONS->user_parameter_temperature[] in the user module). (If
USER_INITIAL_PARAMETERS_TEMPS is FALSE, then the pointer *user_parameter_temperature
must be included in *OPTIONS, but it need not be initialized.)

7.3.21. OPTIONS->TESTING_FREQUENCY_MODULUS[100]

The frequency of testing for periodic testing and reannealing.

7.3.22. OPTIONS->ACTIVATE_REANNEAL[TRUE]

This permits reannealing to be part of the fitting process. This might have to be set to FALSE for
systems with very large numbers of parameters just to decrease the number of function calls.

7.3.23. OPTIONS->REANNEAL_RESCALE[10.0]

The reannealing scale used when MAXIMUM_REANNEAL_INDEX is exceeded.

7.3.24. OPTIONS->MAXIMUM_REANNEAL_INDEX[50000]

The maximum index (number of steps) at which the initial temperature and the index of the
temperature are rescaled to avoid losing machine precision. ASA typically is quite insensitive to the value
used due to the dual rescaling.

7.3.25. OPTIONS->DELTA_X[0.001]

The fractional increment of parameters used to take numerical derivatives when calculating
tangents for reannealing. This is overridden when DELTA_PARAMETERS is set to TRUE, as discussed
further below.

Note that this can cause evaluations of your cost function outside a range when a parameter being
sampled is at the boundary. Howev er, only values of parameters within the ranges set by the user are
actually used for acceptance tests.

- 14 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3.26. OPTIONS->DELTA_PARAMETERS[FALSE]

Different increments, used during reannealing to set each parameter’s numerical derivatives, can be
set with DELTA_PARAMETERS set to TRUE. This requires initializing an array in the user module as
discussed below.

7.3.27. OPTIONS->user_delta_parameter

If DELTA_PARAMETERS is TRUE, a pointer, OPTIONS->user_delta_parameter, is used to
adaptively set increments of parameters used to take pseudo-derivatives (numerical derivatives). For
example, this can be useful to reanneal integer parameters when a choice is made to permit their
derivatives to be taken. If this choice is elected, then OPTIONS->user_delta_parameter[] must be
initialized (named USER_OPTIONS->user_delta_parameter[] in the user module). (If
DELTA_PARAMETERS is FALSE, then the pointer *user_delta_parameter must be included in
*OPTIONS, but it need not be initialized.)

7.3.28. OPTIONS->USER_TANGENTS[FALSE]

By default, asa() calculates numerical tangents (first derivatives) of the cost function for use in
reannealing and to provide this information to the user. Howev er, if USER_TANGENTS is set to TRUE,
then when asa() requires tangents to be calculated, a value of *valid_state_generated_flag (called
*cost_flag in ASA_TEST in user.c) of FALSE is set and the cost function is called. The user is expected
to set up a test in the beginning of the cost function to sense this value, and then calculate the tangents[]
array (containing the derivatives of the cost function, or whatever sensitivity measure is desired to be used
for reannealing) to be returned to asa(). An example is provided with the ASA_TEMPLATE for
ASA_SAMPLE.

7.3.29. OPTIONS->CURVA TURE_0[FALSE]

If the curvature array is quite large for your system, and you really do not use this information, you
can set CURVA TURE_0 to TRUE which just requires a one-dimensional curvature[0] to be defined to
pass to the asa module (to avoid problems with some systems). This is most useful, and typically is
necessary, when minimizing systems with large numbers of parameters since the curvature array is of size
number of parameters squared.

If you wish to calculate the curvature array periodically, every reannealing cycle determined by
OPTIONS->TESTING_FREQUENCY_MODULUS, then set OPTIONS->CURVA TURE_0 to -1.

7.3.30. OPTIONS->QUENCH_PARAMETERS[FALSE]

This Program Option permits you to alter the basic algorithm to perform selective “quenching,” i.e.,
faster temperature cooling than permitted by the ASA algorithm. This can be very useful, e.g., to quench
the system down to some region of interest, and then to perform proper annealing for the rest of the run.
However, note that once you decide to quench rather than to truly anneal, there no longer is any statistical
guarantee of finding a global optimum. Furthermore, once you decide to quench there are many more
alternative algorithms you might wish to choose for your system.

Setting QUENCH_PARAMETERS to TRUE can be extremely useful in very large parameter
dimensions. As discussed in the first 1989 VFSR paper, the heuristic statistical proof of finding the global
optimum reduces to the following: The parameter temperature schedules must suffice to insure that the
product of individual generating distributions,

g =
i

Π gi ,

taken at all annealing times, indexed by k, of not generating a global optimum, given infinite time, is such
that

k
Π (1 − gk) = 0 ,

which is equivalent to

- 15 -

Adaptive Simulated Annealing (ASA) Lester Ingber

k
Σ gk = ∞ .

For the ASA temperature schedule, this is satisfied as

k
Σ

D

Π 1/k−1/D =
k
Σ1/k = ∞ .

Now, if the temperature schedule above is redefined as

Ti(ki) = T0i exp(−ci k
Q/D
i) ,

ci = mi exp(−niQ/D) ,

in terms of the “quenching factor” Q, then the above proof fails if Q > 1 as

k
Σ

D

Π 1/k−Q/D =
k
Σ1/kQ < ∞ .

This simple calculation shows how the “curse of dimensionality” arises, and also gives a possible
way of living with this disease which will be present in any algorithm that substantially samples the
parameter space. In ASA, the influence of large dimensions becomes clearly focussed on the exponential
of the power of k being 1/D, as the annealing required to properly sample the space becomes
prohibitively slow. So, if we cannot commit resources to properly sample the space ergodically, then for
some systems perhaps the next best procedure would be to turn on quenching, whereby Q can become on
the order of the size of number of dimensions. In some cases tried, a small system of only a few
parameters can be used to determine some reasonable Program Options, and then these can be used for a
much larger space scaled up to many parameters. This can work in some cases because of the
independence of dimension of the generating functions.

7.3.31. OPTIONS->user_quench_param_scale

If QUENCH_PARAMETERS is TRUE, a pointer, OPTIONS->user_quench_param_scale, is used
to adaptively set the scale of the temperature schedule. If this choice is elected, then
OPTIONS->user_quench_param_scale[] must be initialized (named
USER_OPTIONS->user_quench_param_scale[] in the user module), and values defined for each
dimension. (If QUENCH_PARAMETERS is FALSE, then the pointer *user_quench_param_scale must
be included in *OPTIONS, but it need not be initialized.) The default in the asa module is to assign the
annealing value of 1 to all elements that might be defined otherwise. If values are selected greater than 1
using this Program Option, then quenching is enforced.

7.3.32. OPTIONS->QUENCH_COST[FALSE]

If QUENCH_COST is set to TRUE, the scale of the power of 1/D temperature schedule used for
the acceptance function can be altered in a similar fashion to that described above when
QUENCH_PARAMETERS is set to TRUE. However, note that this OPTION does not affect the
annealing proof of ASA, and so this may used without damaging the statistical ergodicity of the
algorithm. Even greater functional changes can be made using the Pre-Compile DEFINE_OPTIONS
USER_COST_SCHEDULE.

7.3.33. OPTIONS->user_quench_cost_scale

If QUENCH_COST is TRUE, a pointer, OPTIONS->user_quench_cost_scale, is used to adaptively
set the scale of the temperature schedule. If this choice is elected, then
OPTIONS->user_quench_cost_scale[0] must be initialized (named
USER_OPTIONS->user_quench_cost_scale[0] in the user module). (If QUENCH_COST is FALSE,
then the pointer *user_quench_cost_scale must be included in *OPTIONS, but it need not be initialized.)
The default in the asa module is to assign the annealing value of 1 to this element that might be defined
otherwise.

- 16 -

Adaptive Simulated Annealing (ASA) Lester Ingber

OPTIONS->user_quench_cost_scale may be changed adaptively without affecting the ergodicity of
the algorithm, within reason of course. This might be useful for some systems that require different
approaches to the cost function in different ranges of its parameters. Note that increasing this parameter
beyond its default of 1.0 can result in rapidly locking in the search to a small region of the cost function,
severely handicapping the algorithm. On the contrary, you may find that slowing the cost temperature
schedule, by setting this parameter to a value less than 1.0, may work better for your system.

7.3.34. OPTIONS->asa_data

If the Pre-Compile Option OPTIONAL_DAT A[FALSE] is set to TRUE, an additional Program
Option pointer, OPTIONS->asa_data, becomes available to to return additional information to the user
module from the asa module. This information communicates with the asa module, and memory must be
allocated for it in the user module. An example is given in user.c when SELF_OPTIMIZE is TRUE.

7.3.35. OPTIONS->asa_out_file

If you wish to have the printing from the asa module be sent to a file determined dynamically from
the user module, set the Pre-Compile Printing Option USER_ASA_OUT[FALSE] to TRUE, and define
the Program Option *asa_out_file in the user module. (This overrides any ASA_OUT settings.) An
example of this use for multiple asa() runs is given in the user module.

7.3.36. OPTIONS->cost_schedule

If USER_COST_SCHEDULE[FALSE] is set to TRUE, then (*cost_schedule) () is created as a
pointer to the function user_cost_schedule() in user.c, and to recur_user_cost_schedule() if
SELF_OPTIMIZE is set to TRUE.

7.3.37. OPTIONS->reanneal_function

If USER_REANNEAL_FUNCTION[FALSE] is set to TRUE, then (*reanneal_function) () is
created as a pointer to the function user_reanneal() in user.c, and to recur_user_reanneal() if
SELF_OPTIMIZE is set to TRUE.

7.3.38. OPTIONS->n_accepted

If ASA_SAMPLE is set to TRUE, n_accepted contains the current number of points saved by the
acceptance criteria. This can be used to monitor the sampling.

7.3.39. OPTIONS->bias_acceptance

If ASA_SAMPLE is TRUE, this is the bias of the current state from the Boltzmann acceptance test
described above.

7.3.40. OPTIONS->bias_generated

If ASA_SAMPLE is TRUE, a pointer, OPTIONS->bias_generated, contains the the biases of the
current state from the generating distributions of all active parameters, described above.
OPTIONS->bias_generated[] must be initialized in the user module.

7.3.41. OPTIONS->average_weights

IF ASA_SAMPLE is TRUE, this is the average of the weight[] array holding the products of the
inverse asa generating distributions of all active parameters.

For example, OPTIONS->n_accepted can be used to monitor changes in a new sav ed point in the
cost function, and when OPTIONS->average_weights reaches a specified number (perhaps repeated
several times), the cost function could return an invalid flag from the cost function to terminate the run.
When the average_weights is very small, then additional sampled points likely will not substantially
contribute more information.

- 17 -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3.42. OPTIONS->limit_weights

If ASA_SAMPLE is set to TRUE, limit_weights is a limit on the value of the average of the
weight[] array holding the inverse asa generating distribution. When this lower limit is crossed, asa will
no longer send sampling output to be printed out, although it still will be calculated. As the run
progresses, this average will decrease until contributions from further sampling become relatively
unimportant.

7.3.43. OPTIONS->gener_mov_avr

If ASA_PARALLEL is set to TRUE, gener_mov_avr determines the window of the moving average
of sizes of parallel generated states required to find new best accepted states. A reasonable number for
many problems is 3.

If and when OPTIONS->gener_mov_avr is set to 0, then OPTIONS->gener_block is not changed
thereafter.

7.3.44. OPTIONS->gener_block_max

If ASA_PARALLEL is set to TRUE, gener_block is an initial block size of parallel generated states
to calculate to determine a new best accepted state.

7.3.45. OPTIONS->gener_block_max

If ASA_PARALLEL is set to TRUE, gener_block_max is an initial maximum block size of parallel
generated states to calculate to determine a new best accepted state. This can be changed adaptively
during the run.

This can be useful if your parallel code assigns new processors “on the fly,” to compensate for some
cost functions being more CPU intensive, e.g., due to boundary conditions, etc. Then
OPTIONS->gener_block_max may be larger than the number of physical processors, e.g., if
OPTIONS->gener_block would call for such a size.

8. User Module

This module includes user.c, user.h, and asa_user.h. You may wish to combine them into one file,
or you may wish to use the ASA module as one component of a library required for a large project.

8.1. int main(int argc, char **argv) | int asa_main()

In main(), set up your initializations and calling statements to asa. The files user.c and user.h
provide a sample program, as well as a sample cost function for your convenience. If you do not intend to
pass parameters into main, then you can just declare it as main() without the argc and argv arguments,
deleting other references to argc and argv.

If ASA_LIB is set to TRUE, then asa_main() is used as a function call instead of main().

If SELF_OPTIMIZE is set to TRUE, then the first main()/asa_main() in user.c is closed off, and a
different main()/asa_main() procedure in user.c is used.

8.2. void initialize_parameters(
double *cost_parameters,
double *parameter_lower_bound,
double *parameter_upper_bound,
double *cost_tangents,
double *cost_curvature,
ALLOC_INT *parameter_dimension,
int *parameter_int_real,
USER_DEFINES * USER_OPTIONS)

Before calling asa, the user must allocate storage and initialize some of the passed parameters. A
sample procedure is provided as a template. In this procedure the user should allocate storage for the

- 18 -

Adaptive Simulated Annealing (ASA) Lester Ingber

passed arrays and define the minimum and maximum values. Below is detailed all the parameters which
must be initialized. If your arrays are of size 1, still use them as arrays as described in user.c.
Alternatively, if you define ‘int user_flag’, then pass &user_flag.

As written above, these are the names used in the user module. All these parameters could be
passed globally in the user module, e.g., by defining them in user.h instead of in main() in user.c, but since
the asa module only passes local parameters to facilitate recursive use, this approach is taken here as well.

8.3. void recur_initialize_parameters(
double *recur_cost_parameters,
double *recur_parameter_lower_bound,
double *recur_parameter_upper_bound,
double *recur_cost_tangents,
double *recur_cost_curvature,
ALLOC_INT *recur_parameter_dimension,
int *recur_parameter_int_real,
USER_DEFINES * RECUR_USER_OPTIONS)

This procedure is used only if SELF_OPTIMIZE is TRUE, and is constructed similar to
initialize_parameters().

8.4. double user_cost_function(
double *x,
double *parameter_minimum,
double *parameter_maximum,
double *tangents,
double *curvature,
ALLOC_INT *number_parameters,
int *parameter_type,
int *valid_state_generated_flag,
int *exit_status,
USER_DEFINES *OPTIONS)

8.4.1. user_cost_function

You can give any name to user_cost_function as long as you pass this name to asa; it is called
cost_function in the user module. This function returns a real value which ASA will minimize. In cases
where it seems that the ASA default parameters are not very efficient for your system, you might consider
modifying the cost function being optimized. For example, if your actual cost function is of the form of
an exponential to an exponential, you might do better using the logarithm of this as user_cost_function.

8.4.2. *x

x (called cost_parameters in the user module) is an array of doubles representing a set of parameters
to evaluate.

8.4.3. double *parameter_minimum

8.4.4. double *parameter_maximum

These two arrays of doubles are passed. Since ASA works only on bounded search spaces, these
arrays should contain the minimum and maximum values each parameter can attain. If you aren’t sure,
try a factor of 10 or 100 times any reasonable values. The exponential temperature annealing schedule
should quickly sharpen the search down to the most important region.

Passing the parameter bounds in the cost function permits some additional adaptive features during
the search. For example, setting the lower bound equal to the upper bound will remove a parameter from
consideration. In the user module these bounds are named parameter_lower_bound and

- 19 -

Adaptive Simulated Annealing (ASA) Lester Ingber

parameter_upper_bound.

8.4.5. double *tangents

This array of doubles is passed. On return from asa this contains the first derivatives of the cost
function with respect to its parameters. These can be useful for determining the value of your fit. In this
implementation of ASA, the tangents are used to determine the relative reannealing among parameters.

8.4.6. double *curvature

This array of doubles is passed next. On return from asa, for real parameters, this contains the
second derivatives of the cost function with respect to its parameters. These also can be useful for
determining the value of your fit.

When the DEFINE_OPTIONS CURVA TURE_0 option is set to TRUE the curvature calculations
are bypassed. This can be useful for very large spaces.

8.4.7. ALLOC_INT *number_parameters

An integer containing the dimensionality of the state space is passed next (called
parameter_dimension in the user module). (If you define ‘ALLOC_INT number_parameters’, pass
&number_parameters.) The arrays x (representing cost_parameters), parameter_lower_bound,
parameter_upper_bound, cost_tangents, and parameter_int_real (below) are to be of the size
*number_parameters. The array curvature which may be of size the square of *number_parameters.

8.4.8. int *parameter_type

This integer array is passed next (passed as parameter_int_real in the user module). Each element
of this array (each flag) can be: REAL_TYPE (-1) (indicating the parameter is a real value),
INTEGER_TYPE (1) (indicating the parameter can take on only integer values),
REAL_NO_REANNEAL (-2), or INTEGER_NO_REANNEAL (2). The latter two choices signify that
no derivatives are to be taken with respect to these parameters. For example, this can be useful to exclude
discontinuous functions from being reannealed.

8.4.9. *valid_state_generated_flag

valid_state_generated_flag is the address of an integer, named cost_flag in the user module. In
user_cost_function(), *cost_flag should be set to FALSE (0) if the parameters violate a set of user defined
constraints (e.g., as defined by a set of boundary conditions) or TRUE (1) if the parameters represent a
valid state. If *cost_flag is returned to asa() as FALSE, no acceptance test will be attempted, and a new
set of trial parameters will be generated.

If another algorithm suggests a way of incorporating constraints into the cost function, then this
modified cost function can be used as well by ASA, or that algorithm might best be used a front-end to
ASA.

If OPTIONS->USER_TANGENTS[FALSE] has been set to TRUE, then asa() expects the user to
test the value of *valid_state_generated_flag that enters from asa(). If *valid_state_generated_flag enters
with a value of FALSE, then the user is expected to calculate the tangents[] array (called cost_tangents[]
in ASA_TEST in user.c) before exiting that particular evaluation of the cost function. An example is
provided with the ASA_TEMPLATE for ASA_SAMPLE.

8.4.10. int *exit_status

The address of this integer is passed to asa. On return it contains the code for the reason asa exited.

- 20 -

Adaptive Simulated Annealing (ASA) Lester Ingber

NORMAL_EXIT = 0. Given the criteria set largely by the DEFINE_OPTIONS, the search
has run its normal course.

P_TEMP_TOO_SMALL = 1. A parameter temperature was too small using the set criteria.
Often this is an acceptable status code. You can omit this test by setting
NO_PARAM_TEMP_TEST to TRUE as one of your Pre-Compile Options; then values of
the parameter temperatures less than EPS_DOUBLE are set to EPS_DOUBLE.

C_TEMP_TOO_SMALL = 2. The cost temperature was too small using the set criteria.
Often this is an acceptable status code. You can omit this test by setting
NO_COST_TEMP_TEST to TRUE as one of your Pre-Compile Options; then a value of the
cost temperature less than EPS_DOUBLE is set to EPS_DOUBLE.

COST_REPEATING = 3. The cost function value repeated a number of times using the set
criteria. Often this is an acceptable status code.

TOO_MANY_INVALID_STATES = 4. Too many repetitive generated states were invalid
using the set criteria. This is helpful when using *cost_flag, as discussed above, to include
constraints.

An exit code of 9, defined by exit(9), has been set in case any of the calloc memory allocations
fails. Note that just relying on such a simple summary given by *exit_status can be extremely deceptive,
especially in highly nonlinear problems. It is strongly suggested that the user set ASA_PRINT=TRUE
before any production runs. An examination of some periodic output of ASA can be essential to its
proper use.

8.4.11. USER_DEFINES *OPTIONS

All Program Options are defined in this structure. Since Program Options are passed to asa and the
cost function, these may be changed adaptively.

The Program Options also can be read in from a separate data file, asa_opt, permitting efficient
tuning/debugging of these parameters without having to recompile the code. This option has been added
to the asa module.

8.5. double recur_cost_function(
double *recur_cost_parameters,
double *recur_parameter_lower_bound,
double *recur_parameter_upper_bound,
double *recur_cost_tangents,
double *recur_cost_curvature,
int *recur_parameter_dimension,
int *recur_parameter_int_real,
int *recur_cost_flag,
int *recur_exit_code,
USER_DEFINES * RECUR_USER_OPTIONS)

This procedure is used only if SELF_OPTIMIZE is TRUE, and is constructed similar to
cost_function().

8.6. double user_random_generator()

A random number generator function must be selected. It may be as simple as one of the UNIX®
random number generators (e.g. drand48), or may be user defined, but it should return a real value within
[0,1) and not take any parameters. A good random number generator, randflt, and its auxiliary routines
are provided with the code in the user module.

8.7. void initialize_rng()

Most random number generators should be “warmed-up” by calling a set of dummy random
numbers.

- 21 -

Adaptive Simulated Annealing (ASA) Lester Ingber

8.8. double user_cost_schedule(
double test_temperature,
USER_DEFINES * USER_OPTIONS);

If USER_COST_SCHEDULE[FALSE] is set to TRUE, then this function must define how the new
cost temperature is calculated during the acceptance test. The default is to return test_temperature. For
example, if you sense that the search is spending too much time in local minima at some stage of search,
e.g., dependent on information gathered in USER_OPTIONS, then you might return the square root of
test_temperature, or some other function, to slow down the sharpening of the cost function acceptance
test.

8.9. double recur_user_cost_schedule(
double test_temperature,
USER_DEFINES * RECUR_USER_OPTIONS);

If USER_COST_SCHEDULE[FALSE] and SELF_OPTIMIZE[FALSE] both are set to TRUE, then
this function must define how the new cost temperature is calculated during the acceptance test. As
discussed above for user_cost_schedule(), you may modify the default value of test_temperature returned
by this function, e.g., dependent on information gathered in RECUR_USER_OPTIONS.

8.10. double user_reanneal(
double current_temp,
double tangent,
double max_tangent,
USER_DEFINES * USER_OPTIONS);

If USER_REANNEAL_FUNCTION[FALSE] is set to TRUE, then this function must define how
the new temperature is calculated during reannealing.

8.11. double recur_user_reanneal(
double current_temp,
double tangent,
double max_tangent,
USER_DEFINES * RECUR_USER_OPTIONS);

If USER_REANNEAL_FUNCTION[FALSE] and SELF_OPTIMIZE[FALSE] both are set to
TRUE, then this function must define how the new temperature is calculated during reannealing.

8.12. final_cost = asa(
cost_function,
randflt,
cost_parameters,
parameter_lower_bound,
parameter_upper_bound,
cost_tangents,
cost_curvature,
parameter_dimension,
parameter_int_real,
cost_flag,
exit_code,
USER_OPTIONS);

This is the form of the call to asa from user.c. A double is returned to the calling program as
whatever it is named by the user, e.g., final_cost. It will be the minimum cost value found by asa.

- 22 -

Adaptive Simulated Annealing (ASA) Lester Ingber

8.13. double asa(
double (*user_cost_function) (

double *, double *, double *, double *, double *,
ALLOC_INT *, int *, int *, int *, USER_DEFINES *),

double (*user_random_generator) (void),
double *parameter_initial_final,
double *parameter_minimum,
double *parameter_maximum,
double *tangents,
double *curvature,
ALLOC_INT *number_parameters,
int *parameter_type,
int *valid_state_generated_flag,
int *exit_status,
USER_DEFINES * OPTIONS)

This is how asa is defined in the ASA module, contained in asa.c and asa_user.h. All but the
user_cost_function, user_random_generator, and parameter_initial_final parameters have been described
above as they also are passed by user_cost_function().

8.13.1. double (*user_cost_function) ()

The parameter (*user_cost_function*) () is a pointer to the cost function that you defined in your
user module.

8.13.2. double (*user_random_generator) ()

A pointer to the random number generator function, defined in the user module, must be passed
next.

8.13.3. double *parameter_initial_final

An array of doubles is passed (passed as cost_parameters in the user module). Initially, this array
holds the set of starting parameters which should satisfy any constraints or boundary conditions. Upon
return from the asa procedure, the array will contain the best set of parameters found by asa to minimize
the user’s cost function. Experience shows that any guesses within the acceptable ranges should suffice,
since initially the system is at high annealing temperature and ASA samples the breadth of the ranges.
The default is to have asa generate a set of initial parameters satisfying the user’s constraints. This can be
overridden using USER_INITIAL_PARAMETERS=TRUE, to have the user’s initial guess be the first
generated set of parameters.

8.14. void print_time(char *message, FILE * ptr_out)

As a convenience, this subroutine and its auxiliary routine aux_print_time are provided in asa.c to
keep track of the time spent during optimization. Templates in the code are provided to use these routines
to print to output from both the asa and user modules. These routines can give some compilation
problems on some platforms, and may be bypassed using one of the DEFINE_OPTIONS. It takes as its
parameters a string which will be printed and the pointer to file to where the printout is directed. An
example is given in user_cost_function to illustrate how print_time may be called periodically every set
number of calls by defining PRINT_FREQUENCY in user.h. See the NOTES file for changes in these
routines that may be required on some particular systems.

8.15. void sample(FILE * ptr_out, FILE * ptr_asa)

When ASA_TEMPLATE and ASA_SAMPLE are set to true, using data collected in the
ASA_OUT file, this routine illustrates how to extract the data stored in the ASA_OUT file and print it to
the user module.

- 23 -

Adaptive Simulated Annealing (ASA) Lester Ingber

9. Bug Reports

I volunteer my time to make every reasonable effort to maintain only current versions of the asa
module, to permit the code to compile without “error,” not necessarily without compiler “warnings.” The
user module is offered only as a guide to accessing the asa module. The NOTES file will contain updates
for some standard machines. I welcome your bug reports and constructive critiques regarding this code.
If you are having problems, it might help if you enclose relevant portions your ASA_OUT file.

“Flames” will be rapidly quenched.

10. References

[1] L. Ingber, “Adaptive Simulated Annealing (ASA),” [ftp.alumni.caltech.edu: /pub/ingber/ASA−shar,
ASA−shar.Z, ASA.tar.Z, ASA.tar.gz, ASA.zip], Lester Ingber Research, McLean, VA (1993).

[2] L. Ingber, “Very fast simulated re-annealing,” Mathl. Comput. Modelling, 12, pp. 967-973 (1989).

[3] L. Ingber, H. Fujio, and M.F. Wehner, “Mathematical comparison of combat computer models to
exercise data,” Mathl. Comput. Modelling, 15, pp. 65-90 (1991).

[4] L. Ingber, “Statistical mechanical aids to calculating term structure models,” Phys. Rev. A, 42, pp.
7057-7064 (1990).

[5] L. Ingber, “Statistical mechanics of neocortical interactions: A scaling paradigm applied to
electroencephalography,” Phys. Rev. A, 44, pp. 4017-4060 (1991).

[6] L. Ingber, “Generic mesoscopic neural networks based on statistical mechanics of neocortical
interactions,” Phys. Rev. A, 45, pp. R2183-R2186 (1992).

[7] L. Ingber and B. Rosen, “Very Fast Simulated Reannealing (VFSR),” [ringer.cs.utsa.edu:
/pub/rosen/vfsr.Z], University of Texas, San Antonio, TX (1992).

[8] L. Ingber, “Simulated annealing: Practice versus theory,” Mathl. Comput. Modelling, 18, pp. 29-57
(1993).

[9] M. Wofsey, “Technology: Shortcut tests validity of complicated formulas,” The Wall Street Journal,
CCXXII, p. B1 (24 September 1993).

- 24 -

Adaptive Simulated Annealing (ASA) Lester Ingber

Table of Contents

1. GNU General Public License (GPL) 1

2. Documentation . 1

2.1. Table of Contents . 1

2.2. readme.ms . 1

2.3. README and README+ 1

2.4. asa.[13nl] Manpage . 1

2.5. README.ps . 1

2.6. Additional Documentation . 1

2.7. Parallelizing ASA and PATHINT Project (PAPP) 2

2.8. Additional Information . 2

3. Availability of ASA Code . 2

3.1. Caltech . 2

3.2. Electronic Mail . 2

3.3. ASA Mailing List . 3

4. Background . 3

4.1. Context . 3

4.2. Outline of ASA Algorithm . 3

4.2.1. Generating Probability Density Function 3

4.2.2. Acceptance Probability Density Function 3

4.2.3. Reannealing Temperature Schedule 3

4.3. Efficiency Versus Necessity 4

5. Outline of Use . 4

6. Makefile/Compilation Procedures 4

7. User Options . 5

7.1. Pre-Compile DEFINE_OPTIONS 5

7.1.1. OPTIONS_FILE=TRUE 5

7.1.2. ASA_LIB=FALSE 5

7.1.3. HAVE_ANSI=TRUE 5

7.1.4. IO_PROT OTYPES=TRUE 5

7.1.5. TIME_CALC=FALSE 6

7.1.6. TIME_STD=FALSE 6

7.1.7. INT_LONG=TRUE 6

7.1.8. INT_ALLOC=FALSE 6

7.1.9. SMALL_FLOAT=1.0E-18 6

7.1.10. MIN_DOUBLE=SMALL_FLOAT 6

7.1.11. MAX_DOUBLE=1.0/SMALL_FLOAT 6

7.1.12. EPS_DOUBLE=SMALL_FLOAT 7

7.1.13. NO_PARAM_TEMP_TEST=FALSE 7

7.1.14. NO_COST_TEMP_TEST=FALSE 7

7.1.15. SELF_OPTIMIZE=FALSE 7

7.1.16. ASA_TEST=FALSE 7

- ii -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.1.17. ASA_TEMPLATE=FALSE 7

7.1.18. OPTIONAL_DAT A=FALSE 7

7.1.19. USER_COST_SCHEDULE=FALSE 8

7.1.20. USER_REANNEAL_FUNCTION=FALSE 8

7.1.21. ASA_SAMPLE=FALSE 8

7.1.22. ASA_PARALLEL=FALSE 9

7.2. Printing DEFINE_OPTIONS 9

7.2.1. ASA_PRINT=TRUE 9

7.2.2. ASA_OUT=\"asa_out\" 9

7.2.3. USER_ASA_OUT=FALSE 9

7.2.4. ASA_PRINT_INTERMED=TRUE 9

7.2.5. ASA_PRINT_MORE=FALSE 9

7.3. Program OPTIONS . 9

7.3.1. OPTIONS->LIMIT_ACCEPTANCES[10000] 11

7.3.2. OPTIONS->LIMIT_GENERATED[99999] 11

7.3.3. OPTIONS->LIMIT_INVALID_GENERATED_STATES[1000] 11

7.3.4. OPTIONS->ACCEPTED_TO_GENERATED_RATIO[1.0E-6] 12

7.3.5. OPTIONS->COST_PRECISION[1.0E-18] 12

7.3.6. OPTIONS->MAXIMUM_COST_REPEAT[5] 12

7.3.7. OPTIONS->NUMBER_COST_SAMPLES[5] 12

7.3.8. OPTIONS->TEMPERATURE_RATIO_SCALE[1.0E-5] 12

7.3.9. OPTIONS->COST_PARAMETER_SCALE[1.0] 12

7.3.10. OPTIONS->TEMPERATURE_ANNEAL_SCALE[100.0] 13

7.3.11. OPTIONS->USER_INITIAL_COST_TEMP[FALSE] 13

7.3.12. OPTIONS->user_cost_temperature 13

7.3.13. OPTIONS->INCLUDE_INTEGER_PARAMETERS[FALSE] 13

7.3.14. OPTIONS->USER_INITIAL_PARAMETERS[FALSE] 13

7.3.15. OPTIONS->SEQUENTIAL_PARAMETERS[-1] 13

7.3.16. OPTIONS->INITIAL_PARAMETER_TEMPERATURE[1.0] 13

7.3.17. OPTIONS->RATIO_TEMPERATURE_SCALES[FALSE] 14

7.3.18. OPTIONS->user_temperature_ratio 14

7.3.19. OPTIONS->USER_INITIAL_PARAMETERS_TEMPS[FALSE] . . . 14

7.3.20. OPTIONS->user_parameter_temperature 14

7.3.21. OPTIONS->TESTING_FREQUENCY_MODULUS[100] 14

7.3.22. OPTIONS->ACTIVATE_REANNEAL[TRUE] 14

7.3.23. OPTIONS->REANNEAL_RESCALE[10.0] 14

7.3.24. OPTIONS->MAXIMUM_REANNEAL_INDEX[50000] 14

7.3.25. OPTIONS->DELTA_X[0.001] 14

7.3.26. OPTIONS->DELTA_PARAMETERS[FALSE] 15

7.3.27. OPTIONS->user_delta_parameter 15

7.3.28. OPTIONS->USER_TANGENTS[FALSE] 15

7.3.29. OPTIONS->CURVA TURE_0[FALSE] 15

- iii -

Adaptive Simulated Annealing (ASA) Lester Ingber

7.3.30. OPTIONS->QUENCH_PARAMETERS[FALSE] 15

7.3.31. OPTIONS->user_quench_param_scale 16

7.3.32. OPTIONS->QUENCH_COST[FALSE] 16

7.3.33. OPTIONS->user_quench_cost_scale 16

7.3.34. OPTIONS->asa_data 17

7.3.35. OPTIONS->asa_out_file 17

7.3.36. OPTIONS->cost_schedule 17

7.3.37. OPTIONS->reanneal_function 17

7.3.38. OPTIONS->n_accepted 17

7.3.39. OPTIONS->bias_acceptance 17

7.3.40. OPTIONS->bias_generated 17

7.3.41. OPTIONS->average_weights 17

7.3.42. OPTIONS->limit_weights 18

7.3.43. OPTIONS->gener_mov_avr 18

7.3.44. OPTIONS->gener_block 18

7.3.45. OPTIONS->gener_block_max 18

8. User Module . 18

8.1. int main(int argc, char **argv) | int asa_main() 18

8.2. void initialize_parameters(. 18

8.3. void recur_initialize_parameters(. 19

8.4. double user_cost_function(. 19

8.4.1. user_cost_function 19

8.4.2. *x . 19

8.4.3. double *parameter_minimum 19

8.4.4. double *parameter_maximum 19

8.4.5. double *tangents 20

8.4.6. double *curvature 20

8.4.7. ALLOC_INT *number_parameters 20

8.4.8. int *parameter_type 20

8.4.9. *valid_state_generated_flag 20

8.4.10. int *exit_status 20

8.4.11. USER_DEFINES *OPTIONS 21

8.5. double recur_cost_function(. 21

8.6. double user_random_generator() 21

8.7. void initialize_rng() . 21

8.8. double user_cost_schedule(. 22

8.9. double recur_user_cost_schedule(. 22

8.10. double user_reanneal(. 22

8.11. double recur_user_reanneal(. 22

8.12. final_cost = asa(. 22

8.13. double asa(. 22

8.13.1. double (*user_cost_function) () 23

- iv -

Adaptive Simulated Annealing (ASA) Lester Ingber

8.13.2. double (*user_random_generator) () 23

8.13.3. double *parameter_initial_final 23

8.14. void print_time(char *message, FILE * ptr_out) 23

8.15. void sample(FILE * ptr_out, FILE * ptr_asa) 23

9. Bug Reports . 24

10. References . 24

$Id: readme.ms,v 4.2 1994/10/23 23:35:08 ingber Exp ingber $

- v -

